
3

CONSUMER CREDIT RISK ANALYSIS VIA

MACHINE LEARNING ALGORITMS

Monetary Policy Department

Working Paper №2021-4

Shalkar Baikulakov

Zanggar Belgibayev

The Working Paper and Analytical Note series of the National Bank of

Kazakhstan (the “NBK”) are designed to disseminate the results of the NBK’s

studies as well as other scientific and research works of the NBK staff. The results

of research activity are disseminated with a view to encourage discussions. The

views expressed are those of the authors and do not necessarily reflect the official

views of the NBK.

Consumer credit risk analysis via machine learning algorithms

NBRK – WP – 2021 – 2

© National Bank of Kazakhstan
Any reproduction of the submitted materials is allowed only with the permission of the authors.

Consumer credit risk analysis via machine learning algorithms

Baikulakov Shalkar1

Belgibayev Zanggar2

Аnnotation

This project is an attempt to assess the creditworthiness of individuals through

machine learning algorithms and based on regulatory data provided by second-tier
banks to the central bank. The assessment of the creditworthiness of borrowers can

allow the central bank to investigate the accuracy of issued loans by second-tier
banks, and predict potential systematic risks. In this project, two linear and six

nonlinear classification methods were developed (linear models – Logistic
Regression, Stochastic Gradient Descent, and nonlinear - Neural Networks, kNN,

Decision tree, Random forest, XGBoost, Naïve Bayes), and the algorithms were
compared based on accuracy, precision, and several other metrics. The non-linear

models illustrate more accurate predictions in comparison with the linear models. In
particular, the non-linear models such as the Random Forest and kNN classifiers on

oversampled data demonstrated promising outcomes.

The key words: consumer credits, machine learning, bank regulation, stochastic

gradient descent (linear model), logistic regression (linear model), kNN

(neighbors), random forest classifier (ensemble), decision tree (tree), gaussian NB
(naïve bayes), XGBoost, Neural network (MLP classifier)

Classification JEL: G21, G28, E37, Е51.

1Baikulakov Shalkar – Director of Project Management Office, Center for the Development of Payment and Financial

Technologies.

E-mail: sh.baikulakov@payfintech.kz

2Zanggar Belgibayev – Chief analyst, Monetary Analysis Division, Monetary Policy Department, National Bank of

Kazakhstan.

E-mail: zanggar.belgibayev@nationalbank.kz

2

Content

1. Introduction .. 3

2. Literature review .. 4

3. Research methodology and data .. 5

4. Discussion of results ... 16

5. Conclusion ... 19

References ... 20

Appendix ... 22

3

1. Introduction

The expansion of consumer loans is the main factor behind the growth of retail
loans in recent years. An issuance of consumer loans may lead to economic growth

in the country, but at the same time, it should be noted that excessive financing by
banks can cause the emergence of systemic risks. The rapid growth of consumer

lending can be explained by the emergence of accurate data and instruments to assess
the credit risk of individuals as well as a stabilization of the economic situations and

noted increase in the well-being of the population.
The rapid expansion of consumer lending carries a number of systemic risks,

which are associated, first of all, with the growing level of debt burden on certain
segments of the population. In case of a drop in the real income of the population,
the banking system may deal with massive defaults on consumer loans. As a

consequence, it can lead to a decline in aggregate demand in the economy. Such a
development of events might significantly negatively affect the state of the

economy.
Reviewing studies of other scholars on applying machine learning algorithms,

we can conclude that the most popular method of analyzing the credit risks of
consumer loans on big data set is the employment of non-linear models such as

Neural Networks, kNN, Decision tree, Random forest, XGBoost, Naïve Bayes and
models such as Logistic Regression, Stochastic Gradient Descent. It should also be

noted that the majority of authors used data from credit bureaus and second-tier
banks, however, this research was conducted based on regulatory data collected by

the central bank. Consequently, there might be some discrepancies in the approaches
that might give minor differences.

The first section is a review of the literature, in which similar works by other

authors are reviewed. The second section describes the methodology of the study, as
well as a list of predictors used. Next comes the discussion section of the results, in

which the authors describe the results of the assessment. The findings of this study
are the final section of the work.

4

2. Literature review

Grier (2012) stated that 5 parameters must be considered for consumer credit
analysis. The first parameter is a character that refers to the applicant’s reputation.

Nowadays, credit managers have access to credit bureau report which shows the
credit history of a consumer before deciding to issue a loan. The second factor is

capacity which is related to the income and the existing financial liabilities of the
consumer. Capital is the third parameter that indicates the down payment that the

borrower can afford. The external factors such as the condition in the job market and
general economic conditions are considered as the fourth factor. The last parameter

is collateral.
 Credit scoring techniques estimate the probability of repayment of consumers

using the information in a credit bureau report and the credit application (Grier,

2012). It estimates the probability of repayment of customers. Application scoring
is the first type of credit scoring model that evaluates the application of new

consumers based on the parameters, such as capital, capacity, and so on. Another
model such as the behavior scoring model assesses the repayment ability of

consumers, warning about the potential delinquent accounts.
 One of the goals of using the credit scoring technique is to decrease credit

losses in the future. Besides traditional techniques, banks recently started to integrate
machine learning (ML) algorithms in credit scoring. Henley and Hand (1996)

compared machine learning techniques such as kth nearest neighbor (kNN)
classification method with traditional credit scoring techniques such as linear,

logistic regression, and decision tree. The algorithms were tested for bad debt risk
and the technique with the lowest result was considered as the best method. In spite
of the insensitivity of kNN classification to the parameters, it gave the best result. In

addition, it takes a few seconds to assess the consumer and provide justifications for
refusing to issue a loan (Henley and Hand, 1996).

Addo, Gueran, and Hassani (2018) applied logistic regression, random forest
and gradient boosting classifier, and deep learning model for credit risk analysis of

companies. Various data sets were used, and then 10 most important features were
chosen and the same techniques were used to compare the results. The best algorithm

is supposed to show the highest area under the curve (AUC) and the least root means
square error (RMSE). Binary classifiers outperformed deep learning models, and the

best performance belongs to the gradient boosting classifier.
Regression models of machine learning are also used to evaluate consumer

credit applications. Munkhdalai et al. (2019) compared machine learning algorithms
with human-expert-based models such as the FICO credit scoring system. Survey of

Consumer Finances (SCF) data was used as a data set and various machine learning
regression methods were applied to the data set. The result demonstrated that the
credit losses would be lower if the lending institutions started to use machine

learning from 2001. Additionally, deep neural networks and xgboost algorithms
showed higher accuracy.

 Brown and Mues (2012) tested the suitability and accuracy of classification
techniques, such as logistic regression, neural network, decision tree, gradient

5

boosting, least-square support, and random forest, to imbalanced loan data set. The
undersampling method was applied to the data set, and then the imbalance of the

data set was increased progressively to assess machine learning classification
techniques. The result indicates that random forest and gradient boosting classifiers

dealt well with imbalanced data, while decision tree, quadratic discriminant analysis
(QDA), and kNN classifier performed worse than other methods.

 There are also several algorithms in machine learning besides the
abovementioned models. Baesens et al. (2003) tested kernel-based support vector

machine and least-squares support vector machine, and also other popular machine
learning classifiers to real-life credit scoring data sets including Benelux and UK

financial institutions’ data sets. The result indicates that the neural network classifier
and kernel-based support vector machines performed very well. The author also

mentioned the good performance of linear discriminant analysis and logistic
regression. 41 classifiers including novel credit scoring methods applied to the same

data sets (Lesmann, Baesens, Seow, and Thomas, 2015). The result of the research
shows that artificial neural networks (ANN) performed better than extreme learning
methods (ELM), random forest (RF) better than rotation forest (RotFor). However,

the methods cannot give insightful explanations of the model and future researches
should be done to achieve this goal. Random Forest classifier was chosen as a

benchmark as it has the capability to provide explanatory insights for fundamental
analysis.

 Tsai and Chen (2010) developed four hybrid machine learning methods to
compare with simple classifiers. A hybrid algorithm is a combination of two

machine learning methods. In this research, classification and clustering methods
were chosen and four different methods were selected. The result indicates that the

combination of logistic regression (LR) and neural networks showed the highest
prediction, while ‘clustering + clustering’ was the least accurate algorithm.

 In 2015, the participants implemented XGBoost in 17 out of 29 Kaggle
challenge winning solutions. The algorithm was implemented for store sales
prediction, web text classification, customer behavior prediction, malware

classification (Chen & Guestrin, 2016). In this research, the algorithm will be used
for credit analysis and compared with other methods.

In this project, two linear and 6 nonlinear classification methods were applied
to the dataset that will be described in the next section. The algorithms were

compared based on accuracy, precision, and several other metrics.

3. Research methodology and data

Machine learning algorithms were used for the analysis of the consumer credit
portfolios of Kazakhstani banks. The data was obtained from the Credit Register
provided by second-tier banks to the National Bank of Kazakhstan (NBK). The loan

with missing and unreliable parameters was cleaned out. In addition, loans with late
payments of no longer than 90 days were removed from the data. If the delinquency

of loan payment is more than 90 days, the loan is declared as a non-performing loan
(NPL). Performing loans has no payment delinquency from the consumer side.

6

Table 1
Data

Parameters Type

Region Nur-Sultan, Almaty and 15 regions

Currency KZT, RUB, USD and EUR
Type Personal loan and credit card
Reason Consumer credits and auto loans

Gender Male or female
Citizenship Local or Foreigner

Interest Rate Ranges from 0% to 56%
Credit amount Ranges from 10 000 to 15 million KZT

Age Ranges from 18 to 99 years

Source: National Bank of Kazakhstan

Resampling techniques for imbalanced data
In order to improve the accuracy of applied machine learning algorithms,

resampling techniques such as undersampling and oversampling were utilized. Since

the number of good loans was considerably more than the non-performing loans, the
data was balanced and two techniques were compared.

Graph 1
Resampling strategies for imbalanced datasets

Source: Alencar, 2017

Random undersampler and oversampler are the most popular and simplest

resampling strategies. The first strategy creates a new class with an equal size of
minority class taken from the majority class, whereas the second strategy duplicates
the minority class several times until the length of majority and minority classes will

be equal. The drawback of a random undersampler is the loss of information.
However, it is the only suitable undersampling strategy for a dataset that consists of

categorical and continuous variables. Random oversampler leads to overfitting as it
copies the minority class (Alencar, 2017). Therefore, another appropriate resampling

method was selected.
SMOTE (Synthetic Minority Oversampling Technique) is another popular

oversampling method that draws new samples of minority classes using its existed
data. It draws the lines between an example and the nearest 5 neighbors and creates

7

a new sample along that line. Graph 2 illustrates how new samples were created,
thereby providing additional information to the machine learning model (Brownlee,

2020).
SMOTE cannot be applied to the above mentioned dataset as it does not

handle categorical features. Therefore, Synthetic Minority Oversampling
Technique-Nominal Continuous (SMOTE-NC) is selected as the oversampling

method. It works as a SMOTE method for a continuous dataset, and the categorical
variable of the new sample is the value of the majority of the k-nearest neighbors

(Chawla, Bowyer, Hall and Kegelmeyer, 2002).
Graph 2

Oversampling minority classes using SMOTE

Source: Lemaitre, Nogueira, Oliveira and Aridas, n.d.

Preprocessing

 Preprocessing is important task to make the data readable. Six parameters of
dataset are categorical data and it has to be converted to numerical using encoder.
Scikit-learn library (Python) provides techniques that convert discrete features to

one-hot numerical array. It also has models which split the data into training and
testing dataset (du Boisberranger, n.d.).

 The next important part of preprocessing is feature scaling of the dataset.
Machine learning algorithms commonly use Euclidean distance measure; thus it is

sensitive to magnitudes of parameters. For instance, the algorithms neglect other
parameters in the dataset because of large values of credit amount. Therefore, feature

scaling is required to normalize the dataset. It also decreases the cost: credit scoring
techniques analyze the normalized dataset faster. Abovementioned python library

provides standard feature scaling techniques that normalize the dataset through the
formula:

𝑧 =
𝑥−µ

𝜎
 (du Boisberranger et al., n.d.)

whereas, µ is mean and ϭ is standard deviation of the data.

Principal component analysis

 Principal component analysis (PCA) is one of the well-known dimensionality
reduction techniques. It helps to decrease the dataset dimension with minimal loss

8

of information (Mueller & Guido, 2017). Consequently, it will decrease the
computation time of an algorithm.

 The algorithm selects the right hyperplane and projects the data onto that
hyperplane. After the projection, the variance of the data is computed based on each

new axis called the principal component. The first component preserves maximum
variance, while the last component - least variance.

Graph 3
Principal component analysis

Source: Geron, 2017

 Principal component analysis performed on both balanced datasets. The result
of the undersampled dataset indicates that the first 14 components (columns) are

enough to capture the 95% of the total variance of the dataset and the other 19
components can be erased. It is enough to use only 12 components of an

oversampled dataset to capture 95% of the total variance.
Graph 4

Cumulative explained variance ratio of PCA

Source: compiled by the author

9

 In this research, two linear and six nonlinear machine learning methods were
applied to the dataset. The main goal to find out which algorithm outperforms others.

In addition, the research helps to compare and contrast linear and nonlinear
algorithms.

 The feasibility of handling a large dataset is the main criteria for algorithm
selection. Therefore, well-known algorithms such as linear and kernel support vector

classifier (SVC) were not considered in the research. Logistic regression, stochastic
gradient descent (SGD) classifier, Naïve Bayes classifier, kth nearest neighbors

(kNN), decision tree classifier, random forest classifier, multilayer perceptron
(MLP) classifier (neural network classifier), and extreme gradient boosting (XGB)

classifier were implemented, and the results were discussed. Several
hyperparameters of nonlinear algorithms will be neglected due to the inability to

handle large datasets.

Logistic Regression
 Despite its name, logistic regression is used for classification. The algorithm
calculates the probability based on the training dataset according to the formula:

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−(𝑤0+𝑾𝑻𝑥)
 (Baesens et al., 2003)

where x is input data, w0 is a scalar intercept and W is a parameter vector. If the

probability is more than 50%, the input data is classified as positive.
The important hyperparameter such as solver and regularization parameters

were tuned to increase the accuracy. ‘Liblinear’ solver is generally used for a small
dataset, whereas ‘sag’ and ‘saga’ are a better choice for larger data analysis as it

takes less time for computation (du Boisberranger et al., n.d.).
The penalty is a regularization hyperparameter used in penalization, and it has

a close connection with the solver. ‘Newton-cg’, ‘sag’ and ‘lbfgs’ solvers support
only ‘l2’ penalties, while only ‘saga’ solver supports ‘elasticnet’ penalty. ‘C’ is the

inverse of regularization strength which must be positive. A smaller value for ‘C’
indicates stronger regularization (du Boisberranger et al., n.d.).

Graph 5
Linear classification models

Source: compiled by the authors

Stochastic Gradient Descent (SGD)

10

SGD classifier is one of the effective linear classification methods applied to
large datasets. The algorithm uses a first-order SGD learning routine. The parameter

of the method is updated iteratively over training examples according to the formula:

𝜔 = 𝜔 − ŋ[𝛼
𝜕𝑅(𝜔)

𝜕𝜔
+

𝜕𝐿(𝜔𝑇𝑥𝑖+𝑏,𝑦𝑖)

𝜕𝜔
] (du Boisberranger et al., n.d.)

Where α is hyperparameter which controls regularization strength, R is
regularization term that penalizes model complexity. L is loss function that measures

model fit, ŋ is the learning rate and b is intercept which is updated similarly without
regularization.
 Gradient descent is one of the important algorithms used to minimize a cost

function (Fuchs, 2019). In general, there are three popular types of gradient descent:
1. Batch gradient descent;

2. Stochastic gradient descent;
3. Mini-batch gradient descent.

Batch Gradient Descent computes the partial derivative of the cost function of
an algorithm with regard to its parameters. In other words, the algorithm discovers

how the different values of the model parameters impacts on cost function of the
algorithm. The disadvantage is that it uses whole training data to compute it at every

step. Therefore, the algorithm cannot handle large datasets (Geron, 2019).
Stochastic gradient descent addresses this problem as it picks random

instances of training data and computes gradient descent based on that single
instance. On the other hand, batch gradient descent will decrease the cost function

smoothly, while it bounces up and down until the algorithm stops. The algorithm
will not compute optimal parameter values (Geron, 2019).

Mini-batch gradient descent takes a small sample out of training data and

computes batch gradient descent algorithm. Therefore, the cost function
computation result is less erratic compared to stochastic gradient descent (Geron,

2019).
The method has many hyperparameters which makes it very complex.

Important parameters such as loss function and regularization parameters such as
penalty and alpha are considered in the tuning process of the model. The method

with ‘Hinge’ loss function performs like linear SVM, while with ‘log’ function it
gives logistic regression (du Boisberranger et al., n.d.).

 The algorithm is very sensitive to feature scaling. But it is easy to implement
and very efficient, especially for larger datasets (du Boisberranger et al., n.d.). Also,

it continues to work without keeping the record in RAM (Fuchs, 2019).

Naïve Bayes classifier
 In general, Naïve Bayes (NB) classifier is based on Bayes theorem assuming
the independence of every feature:

𝑃(𝑦|𝑥1,… , 𝑥𝑛) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑃(𝑥1,…,𝑥𝑛)
 (du Boisberranger et al., n.d.)

There are several types of NB classifiers. In this research, Gaussian Naïve Bayes

(GaussianNB) classifier is used for the estimation of the likelihood of the features
based on the formula:

11

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒
−

(𝑥𝑖−𝜇𝑦)2

2𝜎𝑦
2

(du Boisberranger et al., n.d.)

where mean and standard deviation are estimated via maximum likelihood.

kth Nearest Neighbors

 kNN is one of the simplest algorithms of supervised machine learning. The
number of nearest neighbors (k) is the main parameter in this algorithm. The result
of the new data will be identified based on the majority of the result of the nearest

neighbors. The large value of k will overwhelm the effects of noise, but it will have
on the boundary of the classification (du Boisberranger et al., n.d.). The distance is

measured according to the Euclidean Distance formula:

𝑑(𝑥𝑖 ,𝑥𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖ = [(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)]
1/2

(Brown & Mues, 2012)

Graph 6

kth Nearest Neighbors classification model

Source: Mglearn library (Mueller & Guido, 2017)

Decision Tree classifier

 Decision Tree classifier simple algorithm that predicts target output via
applying decision rules based on features data. The strength of the method is the

ability to handle numerical, categorical features, and multi-output problems. The
simplicity of the model is another advantage. But the model may create over-

complex trees which lead to overfitting of the model (du Boisberranger et al., n.d.).
 Criterion and a maximum depth of the tree are considered in the tuning
process of the model. The first parameter is the function that measures the quality of

a split. ‘Gini’ (Gini impurity) and ‘entropy’ (information gain) are two choices for
criteria function (du Boisberranger et al., n.d.).

Random Forest Classifier

Random Forest Classifier is an ensemble classification method that has all the
hyperparameters of the Decision Tree classifier. The difference between the two

models is that the former searches for the best feature among a subset of features,
while the latter seeks for the best feature when splits a node. Thus, a random forest

classifier results in a bigger tree (Geron, 2019).

12

Decision tree classifier
Decision tree classification shows higher variance which leads to overfitting.

Random forest classifier combines diverse trees, thereby achieves the reduction of
the variance. Subsequently, it creates a better model than the decision tree classifier

(du Boisberranger et al., n.d.).
Graph 7

Decision tree and random forest classifier on scikit-learn dataset

Source: compiled by the authors

Neural Network (Multilayer Perceptron)
 A neural network is a model that was inspired by the human brain structure.

The main structure of the algorithm consists of input, output and hidden layers. The
size of hidden layers is an important hyperparameter of the algorithm. Each layer

has nodes that hold a number, and each node receives a signal from each node from
the previous layer and sends a signal to the nodes in the next layer. Each signal has

weight and it goes along with a bias on which the input has no impact (Hansen,
2019).

Graph 8
Neural network classifier

Source: compiled by the authors

13

One important feature of the neural network is the gradient descent algorithm.
It is used to minimize the deviation between the output and the calculated value of

the output. The neural network uses backpropagation to calculate the gradients.
Then, it updates all biases and adjusts weights of all nodes starting from the output

(Hansen, 2019).

XGBoost
 Extreme gradient boosting (XGBoost) is one of the widely used algorithms.

It is an implementation of gradient boosted decision trees. The execution speed and
model performance are the advantages over other gradient boosting algorithms

(Brownlee, 2016).
 The advantage of the method is scalability. It uses a novel tree learning

algorithm for handling sparse data and can handle missing values automatically.
Parallel and distributed processing of the data makes it one the fastest algorithms.

The algorithm uses out-of-core computation and processes millions of examples on
a computer. Therefore, it is one of the best candidates to process large data. Another
important feature of the method is called tree pruning. It results in deeper, but

optimized trees (Chen & Guestrin, 2016).

Cross-validation
 Cross-validation is a statistical method used to measure the performance of

the methods based on training and testing dataset. A commonly used version of
cross-validation is k-fold cross-validation, where the number of folds is 5 or 10

(Mueller & Guido, 2017). In the research, 5-fold cross-validation was used as it is
shown in Graph 9. Consequently, the dataset is divided into five equal folds. If the

first fold is used as a test set, the remaining folds as training set. To sum up, the goal
is to compute the mean and standard deviation of the accuracies and analyze the

impact of datasets on the model accuracy based on metrics.
 Graph 9

Five-fold cross-validation

Source: Mglearn library (Mueller & Guido, 2017)

Grid Search
 Grid Search is the final step of the model construction. In this step, the selected

machine learning model is tuned. The parameter grid is the first step of the tuning
process where a set of all possible hyperparameters of the algorithms is listed. Then,

14

the model with a different set of hyperparameters is applied to the training and test
data. This step helps to identify the set of parameters by which the model achieves

the highest score. The model will be reconstructed with the set of best
hyperparameters (Mueller & Guido, 2017).

Graph 10
Grid Search Overview

Source: Mglearn library (Mueller & Guido, 2017)

 The big question in this step was to choose the hyperparameters to tune the

model. The several models have many hyperparameters and it takes too much time
to tune the process. Thereby, the parameter grid was constructed based on the most
important parameters. For instance, the only the number of nearest neighbors was

the only parameter selected for tuning the kNN model. Kaggle, the website for data
scientists, provides a grid search model for some models that were used in the

research.

Metrics
 In machine learning, regression, clustering and classification algorithms use

different performance metrics. Classification algorithms also have different metrics
for binary and multiclass classification. There are 6 metrics used in this research:

1. Accuracy score
2. Precision score

3. Recall score
4. F1 score
5. Jaccard score

6. The area under the receiving operating characteristic (ROC) curve
7. Type 2 error percentage

Confusion matrix

 The confusion matrix is a matrix table used to evaluate the performance of the
classifier. It generally indicates the number of correct and incorrect results of a

classification algorithm. It also gives information about the type 1 and type 2 errors
which will be explained in this section.

15

Table 2
Confusion matrix

 Actual class (observation)

Predicted class
(expectation)

TP (true positive)

Correct result

FP (false positive)

Unexpected result

FN (false negative)

Missing result

TN (true negative)

Correct absence
of result

Source: Binary classification (du Boisberranger et al., n.d.)

1. Accuracy score

Accuracy is the most important metric in the research. It is also used as a
scoring metric to tune the model in a grid search. The metric indicates the fraction

of the correct results of the model:
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑)

=
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ 1(𝑖𝑓 𝑦𝑡𝑟𝑢𝑒 = 𝑦𝑝𝑟𝑒𝑑)(𝑑𝑢 𝐵𝑜𝑖𝑠𝑏𝑒𝑟𝑟𝑎𝑛𝑔𝑒𝑟 𝑒𝑡 𝑎𝑙. , 𝑛. 𝑑.)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −1

𝑖=0

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (𝐺𝑒𝑟𝑜𝑛,2019; 𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜,2017)

2. Precision score
The precision metric is the number of correct positive predictions divided by

the number of total positive predictions.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (𝐺𝑒𝑟𝑜𝑛,2019; 𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜, 2017)

3. Recall score

Recall is the number of correct positive predictions divided by the number of
actual positive outcomes.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (𝐺𝑒𝑟𝑜𝑛,2019; 𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜, 2017)

4. F1 score

Precision and recall are important metrics. However, none of them separately
will not give full picture. F1 is another metric used for binary classification, and it

is harmonic mean of precision and recall (Geron, 2019; Mueller & Guido; 2017).

𝐹1 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

= 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
𝐹𝑁 + 𝐹𝑃

2

 (𝐺𝑒𝑟𝑜𝑛,2019)

5. Jaccard similarity coefficient score

Jaccard similarity score (JSC) is the intersection of actual and predicted output
to their union.

16

𝐽𝑆𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

𝐹1

2 − 𝐹1

 (𝐿𝑎𝑏𝑎𝑡𝑢𝑡 & 𝐶ℎ𝑒𝑟𝑖𝑓𝑖, 2011)

6. Area under ROC curve
Receiving operating characteristic (ROC) curve is an important tool to analyze

the performance of the binary classifiers. It is a line curve that plots the TP rate

against the FP rate. The area under this curve is another way to compare the
classifiers (Geron, 2019).

The value of these metrics ranges between 0 and 1: the higher the value – the
more suitable the model for consumer credit analysis. In addition, these metrics have

a very close relationship.

7. Type 2 percentage
Machine learning classifiers as statistical models also have type 1 and type 2

errors. Type 1 error is also known as false positive (FP) error (Schmarzo, 2018). For
example, one of the second-tier commercial banks implements the models for credit

scoring. The model rejects issuing a loan to a consumer as it declares that it will
become a non-performing loan in the future. But, in reality, the consumer is capable

of fully repaying loans. In this situation, banks reject to issue debt, but it will not
have a significant impact on the liquidity and solvency of the bank.

False-negative (FN) is another type of error which is also known as type 2

error (Schmarzo, 2018). Suppose that the bank issues debt to the consumer based on
the output of machine learning which claims that the consumer will not fail to repay

it. In reality, the loan becomes non-performing and it has negative consequences to
the liquidity of the bank. The higher percentage of type 2 error indicates how worse

the model is.

4. Discussion of the results

As discussed before, the random undersampling and oversampling techniques
are not the best resampling technics. The former leads to loss of information, while

the latter leads to overfitting problems. In addition, random undersampling was the
only adaptable option for regulatory data in this research. In this section, the result

of all classifiers will be discussed based on the data on which they were applied.

Undersampling data

According to the outcomes of the exercises, linear classifiers and the Naïve

Bayes classifier are not the best options for credit scoring. This shows that linear
models and Naïve Bayes cannot be a solution for credit scoring problems. Table 3

indicates that all classifiers had underfitting problems: the algorithms did not model
training data well and performed inadequately on testing data.

17

Table 3

Accuracy of classifiers applied to undersampled data

Linear Models Non-Linear Models

L
o
g
is

ti
c

R
eg

re
ss

io
n

S
G

D

N
aï

v
e

B
ay

es

k
N

N

D
ec

is
io

n

T
re

e

R
an

d
o
m

F
o
re

st

N
eu

ra
l

N
et

w
o
rk

s

X
G

B

Training 58,6% 58,7% 59,0% 68,6% 68,3% 64,9% 70,8% 69,6%

Testing 58,7% 58,9% 59,0% 67,1% 65,9% 64,6% 70,0% 67,2%

Source: compiled by the authors

 In spite of weak performance, the stochastic gradient descent (SGD) classifier
gave one of the lowest percentages of type 2 error. Neural Networks classifier

generated the best result among the models applied to undersampled data based on
most of the metrics. But a high percentage of type 2 error does not make it a favorite.

Also, the model takes comparatively more time for computation. Thereby, the
extreme gradient boosting (XGB) classifier is the best option, because it is fast,

accurate, precise, and also had the second highest accuracy score and second-lowest
percentage of type 2 error.

Table 4
Models and performance results

Metrics

Accuracy Precision Recall F1 JSC AUC_ROC Type 2 error

L
in

ea
r Logistic

Regression
58,7% 59,0% 58,5% 58,7% 41,6% 58,7% 20,8%

SGD 58,9% 57,9% 66,5% 61,9% 44,8% 58,9% 16,8%

N
o
n

-L
in

ea
r

Naïve Bayes 59,0% 60,1% 54,3% 57,0% 39,9% 59,0% 23,0%

kNN 67,1% 68,4% 64,0% 66,1% 49,4% 67,1% 18,6%

Decision Tree 65,9% 66,9% 63,5% 65,2% 48,3% 65,9% 18,3%

Random Forest 64,6% 63,5% 69,4% 66,3% 49,6% 64,6% 15,4%

Neural

Networks
70,0% 72,8% 64,1% 68,2% 51,7% 70,0% 18,0%

XGB 67,2% 67,4% 67,3% 67,4% 50,8% 67,2% 16,4%

Source: compiled by the authors

Oversampled data

 The classifiers performed much better on oversampled data. One of the

reasons for the success is the SMOTE resampling technique which brought
additional information to the data. Linear classifiers and Naïve Bayes classifiers

18

showed the worst performance results. Other classifiers well-fitted training data and
performed well on oversampled data.

 Table 5
Accuracy of classifiers applied to oversampled data

Linear Models Non-Linear Models

L
o
g
is

ti
c

R
eg

re
ss

io
n

S
G

D

N
aï

v
e

B
ay

es

k
N

N

D
ec

is
io

n

T
re

e

R
an

d
o
m

F
o
re

st

N
eu

ra
l

N
et

w
o
rk

s

X
G

B

Training 64,1% 64,1% 64,9% 99,9% 76,8% 99,6% 73,6% 74,6%

Testing 64,1% 64,1% 64,9% 83,5% 75,3% 84,8% 73,6% 74,4%

 Source: compiled by the author

 Neural Networks was a promising model, but there is an insignificant

difference between the model performance on undersampled and oversampled data.
Despite of an increase in the accuracy on oversampled data in comparison with

undersampled data, the Neural Networks could not outperform non-linear models.
 According to Table 6, kNN and random forest classifiers outperformed other

classifiers based on all indicators. In addition, both models demonstrated the lowest
percentage of type 2 error. However, the random forest classifier outperformed the

kNN classifier by all metrics except precision.
Table 6

Models and performance results

Metrics

Accuracy Precision Recall F1 JSC AUC_ROC Type 2 error

L
in

ea
r Logistic

Regression
64,1% 63,9% 65,1% 64,5% 47,6% 64,1% 17,5%

SGD 64,1% 63,9% 65,1% 64,5% 47,6% 64,1% 17,5%

N
o
n

-L
in

ea
r

Naïve Bayes 64,9% 62,6% 74,2% 67,9% 51,4% 64,9% 12,9%

kNN 83,5% 85,2% 81,0% 83,0% 71,0% 83,5% 9,5%

Decision Tree 75,3% 74,8% 76,2% 75,5% 60,7% 75,3% 11,9%

Random Forest 84,8% 84,7% 85,0% 84,8% 73,6% 84,8% 7,5%

Neural

Networks
73,6% 71,2% 79,1% 75,0% 60,0% 73,6% 10,5%

XGB 74,4% 73,5% 76,2% 74,9% 59,8% 74,4% 11,9%

Source: compiled by the authors

19

5. Conclusion

The results of the study showed that the machine learning models work
sufficiently well on the basis of regulatory data collected by the central bank. In

addition, the analysis of consumer loans with machine learning algorithms
demonstrated a unique insight regarding the features of (bad and good) consumer

borrowers as well as provided information to check the accuracy of issued consumer
loans by second-tired banks.

In this research, we have presented that it is critical to perform data quality
checks (during arrangement and cleaning procedures to eliminate unnecessary

variables), and it is essential to deal with an imbalanced set of training data to avert
bias in favor of most categories.

In terms of forecasting accuracy of models, oversampled data adjusted by the

SMOTE method showed more promising results in comparison with randomly
undersampled data. In other words, the oversampled data adjusted by SMOTE

helped to minimize the loss of information and increase the forecasting power.
Models with well-fitted training data performed better on oversampled data

compared with randomly undersampled data.
 Furthermore, the non-linear models illustrated more accurate predictions

compared with the linear models. Specifically, the non-linear models such as the
random forest and kNN classifiers on oversampled data outperformed other

classification models, on the other hand, the linear models such as logistic regression
and SGD classifier showed the weakest results among compared eight models.

 To sum up, the models based on regulatory data can be an adequate foundation
for the evaluation of credit risk of issued consumer loans by second-tier banks, and
also can help the central bank to predict potential systematic risks. So, according to

outcomes of the study, an assessment of credit risk through machine learning can be
a good supplement for regulation of the second-tier banks that issue consumer loans.

In order to improve the quality of this research several steps should be done:
 Additional data: According to Grier (2012), there are some additional data

such as incomes, social status, experience, education, and the sector in which a
borrower works, which might bring a positive impact on the performance of

algorithms.
In terms of models, there are some approaches that are able to improve their

accuracy:
a. Application of hybrid machine learning methods

b. Building a Selective Combined Forecasting System
c. Including additional parameters in grid search and over/undersampling

20

References

Addo, P., Guegan, D., & Hassani, B. (2018). Credit Risk Analysis Using Machine
and Deep Learning Models. Risks, 6(2), 38. doi: 10.3390/risks6020038

Alencar, R. (2017). Resampling strategies for imbalanced datasets. Retrieved from
https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen,
J. (2003). Benchmarking state-of-the-art classification algorithms for credit

scoring. Journal of The Operational Research Society, 54(6), 627-635. doi:
10.1057/palgrave.jors.2601545

Brown, I., & Mues, C. (2012). An experimental comparison of classification
algorithms for imbalanced credit scoring data sets. Expert Systems with
Applications, 39(3), 3446-3453. doi: 10.1016/j.eswa.2011.09.033

Brownlee, J. (2016). A Gentle Introduction to XGBoost for Applied Machine
Learning. Retrieved from https://machinelearningmastery.com/gentle-

introduction-xgboost-applied-machine-learning/

Brownlee, J. (2016). Metrics to Evaluate Machine Learning Algorithms in Python.

Retrieved from https://machinelearningmastery.com/metrics-evaluate-machine-
learning-algorithms-python/

Brownlee, J. (2020). SMOTE for Imbalanced Classification with Python. Retrieved
from https://machinelearningmastery.com/smote-oversampling-for-

imbalanced-classification/

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence Research,
16, 321-357. Doi: 10.1613/jair.953

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting

System. Proceedings of The 22Nd ACM SIGKDD International Conference On
Knowledge Discovery and Data Mining, 785–794. doi:

10.1145/2939672.2939785

du Boisberranger, J., Van den Bossche, J., Esteve, L., Fan, T., Gramfort, A., &

Grisel, O. et al. User guide: contents — scikit-learn 0.23.2 documentation.
Retrieved from https://scikit-learn.org/stable/user_guide.html

Fuchs, M. (2019). Introduction to SGD Classifier - Michael Fuchs Python. Retrieved
from https://michael-fuchs-python.netlify.app/2019/11/11/introduction-to-sgd-

classifier/

Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow (2nd ed.). Sebastopol, California: O'Reilly Media, Incorporated.

21

Grier, W. (2012). Credit analysis of financial institutions (2nd ed., pp. 294-296).
London: Euromoney Institutional Investor PLC.

Hansen, C. (2019). Neural Networks: Feedforward and Backpropagation Explained.
Retrieved from https://mlfromscratch.com/neural-networks-

explained/#overview

Henley, W., & Hand, D. (1996). A k-Nearest-Neighbour Classifier for Assessing

Consumer Credit Risk. The Statistician, 45(1), 77. doi: 10.2307/2348414

Labatut, V., & Cherifi, H. (2011). Evaluation of Performance Measures for

Classifiers Comparison. Ubiquitous Computing and Communication Journal, 6,
21-34. Retrieved from https://arxiv.org/abs/1112.4133

Lemaitre, G., Nogueira, F., Oliveira, D., & Aridas, C. 2. Over-sampling —
imbalanced-learn 0.5.0 documentation. Retrieved from https://imbalanced-

learn.readthedocs.io/en/stable/over_sampling.html#smote-adasyn

Lessmann, S., Baesens, B., Seow, H., & Thomas, L. (2015). Benchmarking state-of-

the-art classification algorithms for credit scoring: An update of
research. European Journal of Operational Research, 247(1), 124-136. doi:
10.1016/j.ejor.2015.05.030

Mueller, A., & Guido, S. (2017). Introduction to Machine Learning with Python (1st
ed.). Sebastopol, California: O'Reilly Media.

Munkhdalai, L., Munkhdalai, T., Namsrai, O., Lee, J., & Ryu, K. (2019). An
Empirical Comparison of Machine-Learning Methods on Bank Client Credit

Assessments. Sustainability, 11(3), 699. doi: 10.3390/su11030699

Schmarzo, B. (2018). Understanding Type 1 and Type 2 Errors [Blog]. Retrieved

from https://www.datasciencecentral.com/profiles/blogs/understanding-type-i-
and-type-ii-errors

Tsai, C., & Chen, M. (2010). Credit rating by hybrid machine learning
techniques. Applied Soft Computing, 10(2), 374-380. doi:

10.1016/j.asoc.2009.08.003

https://www.datasciencecentral.com/profiles/blogs/understanding-type-i-and-type-ii-errors
https://www.datasciencecentral.com/profiles/blogs/understanding-type-i-and-type-ii-errors

22

Appendix

Important libraries
import numpy as np

import pandas as pd
import matplotlib.pyplot as plt

import matplotlib
import os

path = ’E:\...’ #selecting path to document where the file is located
os.chdir(path)

df_ml = pd.read_csv(‘filename.csv’)
X_df = df_ml.iloc[:,:-1].values
y_df = df_ml.iloc[:,-1].values

Random Undersampling algorithm from imblearn library

from imblearn.under_sampling import RandomUnderSampler as rus
us = rus(random_state=42)

X, y = us.fit_resample(X_df, y_df)

SMOTE-NC oversampling algorithm from imblearn library
from imblearn.over_sampling import SMOTENC

sm = SMOTENC(random_state=42, categorical_features=[0,1,2,3,4,5]) # there
column of the data are categorical variables

X, y = sm.fit(X_df, y_df)

Encoding categorical data

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder

the first column of categorical variables contained 18 different variables (three

cities and regions (also former name for one region)), thus create 18 rows
ct0 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[0])],

remainder=’passthrough’)
X=np.array(ct0.fit_transform(X))

the second column of categorical variables contained 4 different variables (four

type of currency, in which a loan was issued), thus create 4 rows
ct1 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])],

remainder=’passthrough’)
X=np.array(ct1.fit_transform(X))

the third column of categorical variables contained 2 different variables (credit
card or cash), thus create 2 rows

ct2 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])],
remainder=’passthrough’)

23

X=np.array(ct2.fit_transform(X))

the fourth column of categorical variables contained 2 different variables (for
consumer use or autoloan), thus create 2 rows

ct3 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])],
remainder=’passthrough’)

X=np.array(ct3.fit_transform(X))

the fifth column of categorical variables contained 2 different variables (male or
female), thus create 2 rows

ct4 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])],
remainder=’passthrough’)

X=np.array(ct4.fit_transform(X))

the sixth column of categorical variables contained 2 different variables (local or
foreigner), thus create 2 rows
ct5 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])],

remainder=’passthrough’)
X=np.array(ct5.fit_transform(X))

Label Encoder of y variable

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

y = le.fit_transform(y)

splitting data into train and test dataset
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,
random_state=1)

feature scaling
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_train[:,-3:] = sc.fit_transform(X_train[:,-3:])

X_test[:,-3:] = sc.transform(X_test[:,-3:])

Principal component analysis (PCA)
from sklearn.decomposition import PCA

pca = PCA(n_components=a) # a is quantity where cumulative explained variance
ratio > 95%

X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)

Logistic Regression

24

from sklearn.linear_model import LogisticRegression
log = LogisticRegression().fit(X_train,y_train)

y_tr_log_pred = log.predict(X_train)
y_ts_log_pred = log.predict(X_test)

Stochastic Gradient Descent Classifier

from sklearn.linear_model import SGDClassifier
sgd=SGDClassifier().fit(X_train,y_train)

y_tr_sgd_pred = sgd.predict(X_train)
y_ts_sgd_pred = sgd.predict(X_test)

Gaussian Naïve Bayes Classifier

from sklearn.naive_bayes import GaussianNB
nbc = GaussianNB().fit(X_train,y_train)

y_tr_nb_pred = nbc.predict(X_train)
y_ts_nb_pred = nbc.predict(X_test)

kth nearest neighbors (kNN) Classifier
from sklearn.neighbors import KNeighborsClassifier

knn=KNeighborsClassifier().fit(X_train,y_train)
y_tr_knn_pred = knn.predict(X_train)

y_ts_knn_pred = knn.predict(X_test)

Decision Tree Classifier
from sklearn.tree import DecisionTreeClassifier

dtc=DecisionTreeClassifier(max_depth=14,
criterion='entropy').fit(X_train,y_train)

y_tr_dt_pred = dtc.predict(X_train)
y_ts_dt_pred = dtc.predict(X_test)

Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier().fit(X_train,y_train)
y_tr_rf_pred = rfc.predict(X_train)

y_ts_rf_pred = rfc.predict(X_test)

Multi-layer perceptron Classifier (Neural network)
from sklearn.neural_network import MLPClassifier

nnc = MLPClassifier().fit(X_train,y_train)
y_tr_nnc_pred = nnc.predict(X_train)

y_ts_nnc_pred = nnc.predict(X_test)

Extreme gradient boosting (XGB) Classifier
from xgboost import XGBClassifier

25

xgb = XGBClassifier().fit(X_train,y_train)
y_tr_xgb_pred = xgb.predict(X_train)

y_ts_xgb_pred = xgb.predict(X_test)

Cross-validation
from sklearn.model_selection import cross_val_score

accuracies = cross_val_score(estimator = xgb, X = X_train, y = y_train, cv = 5)
print('Accuracy: {:.2f} %'.format(accuracies.mean()*100))

print('Standard deviation: {:.2f} %'.format(accuracies.std()*100))

Note: we can put other models instead of XGB to analyze cross-validation result

Grid Search for Logistic Regression
from sklearn.model_selection import GridSearchCV

parameters = [{'penalty': ['none'], 'solver':['newton-cg', 'sag', 'saga', 'lbfgs']},
 {'penalty': ['elasticnet'], 'C': [0.01, 0.1, 0.25, 0.5, 0.75, 1, 5, 10],
'solver':['saga']},

 {'penalty': ['l2'], 'C': [0.01, 0.1, 0.25, 0.5, 0.75, 1, 5, 10], 'solver':['newton-
cg', 'sag', 'saga', 'lbfgs']}]

grid_search = GridSearchCV(estimator = log,
 param_grid = parameters,

 scoring = 'accuracy',
 cv = 5,

 n_jobs = -1)
grid_search.fit(X_train, y_train)

best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

print('Best accuracy: {:.2f} %'.format(best_accuracy*100))
print('Best parameters: ',best_parameters)

Grid Search for SGD Classifier
from sklearn.model_selection import GridSearchCV

parameters = [{"loss" : ["hinge", "log", "squared_hinge", "modified_huber"],
 "alpha" : [0.0001, 0.001, 0.01, 0.1], "penalty" : ["l2", "l1", "none"]}]

grid_search = GridSearchCV(estimator = sgd,
 param_grid = parameters,

 scoring = 'accuracy',
 cv = 5,

 n_jobs = -1)
grid_search.fit(X_train, y_train)

best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

print('Best accuracy: {:.2f} %'.format(best_accuracy*100))
print('Best parameters: ',best_parameters)

26

Grid Search for Gaussian Naïve Bayes Classifier

from sklearn.model_selection import GridSearchCV
parameters = [{'var_smoothing': [1e-12,1e-10,1e-7,1e-4,1e-3,1e-2,1e-1,1,10]}]

grid_search = GridSearchCV(estimator = nbc,
 param_grid = parameters,

 scoring = 'accuracy',
 cv = 5,

 n_jobs = -1)
grid_search.fit(X_train, y_train)

best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

print('Best accuracy: {:.2f} %'.format(best_accuracy*100))
print('Best parameters: ',best_parameters)

Grid Search for kNN Classifier
from sklearn.model_selection import GridSearchCV

parameters = [{'n_neighbors': list(range(1, 81))}]
grid_search = GridSearchCV(estimator = knn,

 param_grid = parameters,
 scoring = 'accuracy',

 cv = 5,
 n_jobs = -1)

grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_

best_parameters = grid_search.best_params_
print('Best accuracy: {:.2f} %'.format(best_accuracy*100))

print('Best parameters: ',best_parameters)

Grid Search for Decision Tree Classifier

from sklearn.model_selection import GridSearchCV
parameters = [{'criterion':['gini', 'entropy'],'max_depth': list(range(1,21))}]

grid_search = GridSearchCV(estimator = dtc,
 param_grid = parameters,

 scoring = 'accuracy',
 cv = 5,

 n_jobs = -1)
grid_search.fit(X_train, y_train)

best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

print('Best accuracy: {:.2f} %'.format(best_accuracy*100))
print('Best parameters: ',best_parameters)

Grid Search for Random Forest Classifier

27

from sklearn.model_selection import GridSearchCV
parameters = [{'n_estimators': list(range(1,21)), 'max_features': ['auto', 'sqrt', 'log2'],

 'max_depth' : ['None',8], 'criterion' :['gini', 'entropy']}]
grid_search = GridSearchCV(estimator = rfc,

 param_grid = parameters,
 scoring = 'accuracy',

 cv = 5,
 n_jobs = -1)

grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_

best_parameters = grid_search.best_params_
print('Best accuracy: {:.2f} %'.format(best_accuracy*100))

print('Best parameters: ',best_parameters)

Grid Search for MLP Classifier
from sklearn.model_selection import GridSearchCV
parameters = [{'hidden_layer_sizes':[100,200,300,[200,50],[100,100],[200,100]],

 'activation':['identity','logistic','tanh','relu'],
 'solver': ['adam'],

 'learning_rate':['constant','invscaling','adaptive'],
 'max_iter': [1000,1500,2000]}]

grid_search = GridSearchCV(estimator = nnc,
 param_grid = parameters,

 scoring = 'accuracy',
 cv = 5,

 n_jobs = -1)
grid_search.fit(X_train, y_train)

best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_
print('Best accuracy: {:.2f} %'.format(best_accuracy*100))

print('Best parameters: ',best_parameters)

Grid Search for XGB Classifier
from sklearn.model_selection import GridSearchCV

parameters = [{'n_estimators': [1000], #number of trees, change it to 1000 for better
results

 'max_depth': [6,7,8],
 'learning_rate': [0.05], #so called `eta` value

 'objective':['binary:logistic'],
 'tree_method':['exact'],

 'min_child_weight': [11],
 'subsample': [0.8],

 'colsample_bytree': [0.7]}]
grid_search = GridSearchCV(estimator = xgb,

28

 param_grid = parameters,
 scoring = 'accuracy',

 cv = 5,
 n_jobs = -1)

grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_

best_parameters = grid_search.best_params_
print('Best accuracy: {:.2f} %'.format(best_accuracy*100))

print('Best parameters: ',best_parameters)

After grid search, all best parameters should be implemented to be sure that the
model with the best accuracy give higher accuracy and after that other metrics should

be analyzed

Example where all metrics that were used
from sklearn.metrics import confusion_matrix, accuracy_score
knn_cm_tr = confusion_matrix(y_train,y_tr_knn_pred)

print(knn_cm_tr)
accuracy_score(y_train, y_tr_knn_pred)

knn_cm_ts = confusion_matrix(y_test,y_ts_knn_pred)

print(knn_cm_ts)
accuracy_score(y_test, y_ts_knn_pred)

from sklearn.metrics import roc_auc_score, jaccard_score, f1_score,

precision_score, recall_score
print(roc_auc_score(y_test,y_ts_knn_pred))

print(jaccard_score(y_test,y_ts_knn_pred))
print(f1_score(y_test,y_ts_knn_pred))
print(precision_score(y_test,y_ts_knn_pred))

print(recall_score(y_test,y_ts_knn_pred))

Here, the metrics were used to analyze the performance of kNN Classifier, the
variables should be changed to achieve the result of the other models

