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Аnnotation 
 
This project is an attempt to assess the creditworthiness of individuals through 

machine learning algorithms and based on regulatory data provided by second-tier 
banks to the central bank. The assessment of the creditworthiness of borrowers can 

allow the central bank to investigate the accuracy of issued loans by second-tier 
banks, and predict potential systematic risks. In this project, two linear and six 

nonlinear classification methods were developed (linear models – Logistic 
Regression, Stochastic Gradient Descent, and nonlinear - Neural Networks, kNN, 

Decision tree, Random forest, XGBoost, Naïve Bayes), and the algorithms were 
compared based on accuracy, precision, and several other metrics. The non-linear 

models illustrate more accurate predictions in comparison with the linear models. In 
particular, the non-linear models such as the Random Forest and kNN classifiers on 

oversampled data demonstrated promising outcomes.     
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1. Introduction 

The expansion of consumer loans is the main factor behind the growth of retail 
loans in recent years. An issuance of consumer loans may lead to economic growth 

in the country, but at the same time, it should be noted that excessive financing by 
banks can cause the emergence of systemic risks. The rapid growth of consumer 

lending can be explained by the emergence of accurate data and instruments to assess 
the credit risk of individuals as well as a stabilization of the economic situations and 

noted increase in the well-being of the population.    
The rapid expansion of consumer lending carries a number of systemic risks, 

which are associated, first of all, with the growing level of debt burden on certain 
segments of the population. In case of a drop in the real income of the population, 
the banking system may deal with massive defaults on consumer loans. As a 

consequence, it can lead to a decline in aggregate demand in the economy. Such a 
development of events might significantly negatively affect the state of the 

economy.  
Reviewing studies of other scholars on applying machine learning algorithms, 

we can conclude that the most popular method of analyzing the credit risks of 
consumer loans on big data set is the employment of non-linear models such as 

Neural Networks, kNN, Decision tree, Random forest, XGBoost, Naïve Bayes and 
models such as Logistic Regression, Stochastic Gradient Descent. It should also be 

noted that the majority of authors used data from credit bureaus and second-tier 
banks, however, this research was conducted based on regulatory data collected by 

the central bank. Consequently, there might be some discrepancies in the approaches 
that might give minor differences.          

The first section is a review of the literature, in which similar works by other 

authors are reviewed. The second section describes the methodology of the study, as 
well as a list of predictors used. Next comes the discussion section of the results, in 

which the authors describe the results of the assessment. The findings of this study 
are the final section of the work. 
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2. Literature review 

Grier (2012) stated that 5 parameters must be considered for consumer credit 
analysis. The first parameter is a character that refers to the applicant’s reputation. 

Nowadays, credit managers have access to credit bureau report which shows the 
credit history of a consumer before deciding to issue a loan. The second factor is 

capacity which is related to the income and the existing financial liabilities of the 
consumer. Capital is the third parameter that indicates the down payment that the 

borrower can afford. The external factors such as the condition in the job market and 
general economic conditions are considered as the fourth factor. The last parameter 

is collateral. 
 Credit scoring techniques estimate the probability of repayment of consumers 

using the information in a credit bureau report and the credit application (Grier, 

2012). It estimates the probability of repayment of customers. Application scoring 
is the first type of credit scoring model that evaluates the application of new 

consumers based on the parameters, such as capital, capacity, and so on. Another 
model such as the behavior scoring model assesses the repayment ability of 

consumers, warning about the potential delinquent accounts. 
 One of the goals of using the credit scoring technique is to decrease credit 

losses in the future. Besides traditional techniques, banks recently started to integrate 
machine learning (ML) algorithms in credit scoring. Henley and Hand (1996) 

compared machine learning techniques such as kth nearest neighbor (kNN) 
classification method with traditional credit scoring techniques such as linear, 

logistic regression, and decision tree. The algorithms were tested for bad debt risk 
and the technique with the lowest result was considered as the best method. In spite 
of the insensitivity of kNN classification to the parameters, it gave the best result. In 

addition, it takes a few seconds to assess the consumer and provide justifications for 
refusing to issue a loan (Henley and Hand, 1996). 

Addo, Gueran, and Hassani (2018) applied logistic regression, random forest 
and gradient boosting classifier, and deep learning model for credit risk analysis of 

companies. Various data sets were used, and then 10 most important features were 
chosen and the same techniques were used to compare the results. The best algorithm 

is supposed to show the highest area under the curve (AUC) and the least root means 
square error (RMSE). Binary classifiers outperformed deep learning models, and the 

best performance belongs to the gradient boosting classifier. 
Regression models of machine learning are also used to evaluate consumer 

credit applications. Munkhdalai et al. (2019) compared machine learning algorithms 
with human-expert-based models such as the FICO credit scoring system. Survey of 

Consumer Finances (SCF) data was used as a data set and various machine learning 
regression methods were applied to the data set. The result demonstrated that the 
credit losses would be lower if the lending institutions started to use machine 

learning from 2001. Additionally, deep neural networks and xgboost algorithms 
showed higher accuracy.  

 Brown and Mues (2012) tested the suitability and accuracy of classification 
techniques, such as logistic regression, neural network, decision tree, gradient 
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boosting, least-square support, and random forest, to imbalanced loan data set. The 
undersampling method was applied to the data set, and then the imbalance of the 

data set was increased progressively to assess machine learning classification 
techniques. The result indicates that random forest and gradient boosting classifiers 

dealt well with imbalanced data, while decision tree, quadratic discriminant analysis 
(QDA), and kNN classifier performed worse than other methods. 

 There are also several algorithms in machine learning besides the 
abovementioned models. Baesens et al. (2003) tested kernel-based support vector 

machine and least-squares support vector machine, and also other popular machine 
learning classifiers to real-life credit scoring data sets including Benelux and UK 

financial institutions’ data sets. The result indicates that the neural network classifier 
and kernel-based support vector machines performed very well. The author also 

mentioned the good performance of linear discriminant analysis and logistic 
regression. 41 classifiers including novel credit scoring methods applied to the same 

data sets (Lesmann, Baesens, Seow, and Thomas, 2015). The result of the research 
shows that artificial neural networks (ANN) performed better than extreme learning 
methods (ELM), random forest (RF) better than rotation forest (RotFor). However, 

the methods cannot give insightful explanations of the model and future researches 
should be done to achieve this goal. Random Forest classifier was chosen as a 

benchmark as it has the capability to provide explanatory insights for fundamental 
analysis. 

 Tsai and Chen (2010) developed four hybrid machine learning methods to 
compare with simple classifiers. A hybrid algorithm is a combination of two 

machine learning methods. In this research, classification and clustering methods 
were chosen and four different methods were selected. The result indicates that the 

combination of logistic regression (LR) and neural networks showed the highest 
prediction, while ‘clustering + clustering’ was the least accurate algorithm.  

 In 2015, the participants implemented XGBoost in 17 out of 29 Kaggle 
challenge winning solutions. The algorithm was implemented for store sales 
prediction, web text classification, customer behavior prediction, malware 

classification (Chen & Guestrin, 2016). In this research, the algorithm will be used 
for credit analysis and compared with other methods. 

In this project, two linear and 6 nonlinear classification methods were applied 
to the dataset that will be described in the next section. The algorithms were 

compared based on accuracy, precision, and several other metrics. 
 

3. Research methodology and data 

Machine learning algorithms were used for the analysis of the consumer credit 
portfolios of Kazakhstani banks. The data was obtained from the Credit Register 
provided by second-tier banks to the National Bank of Kazakhstan (NBK). The loan 

with missing and unreliable parameters was cleaned out. In addition, loans with late 
payments of no longer than 90 days were removed from the data. If the delinquency 

of loan payment is more than 90 days, the loan is declared as a non-performing loan 
(NPL). Performing loans has no payment delinquency from the consumer side. 
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Table 1 
Data 

Parameters Type 

Region Nur-Sultan, Almaty and 15 regions 

Currency KZT, RUB, USD and EUR 
Type Personal loan and credit card 
Reason Consumer credits and auto loans 

Gender Male or female 
Citizenship Local or Foreigner 

Interest Rate Ranges from 0% to 56% 
Credit amount Ranges from 10 000 to 15 million KZT 

Age Ranges from 18 to 99 years 

Source: National Bank of Kazakhstan  
 

Resampling techniques for imbalanced data   
In order to improve the accuracy of applied machine learning algorithms, 

resampling techniques such as undersampling and oversampling were utilized. Since 

the number of good loans was considerably more than the non-performing loans, the 
data was balanced and two techniques were compared. 

Graph 1 
Resampling strategies for imbalanced datasets 

 
Source: Alencar, 2017 

  
Random undersampler and oversampler are the most popular and simplest 

resampling strategies. The first strategy creates a new class with an equal size of 
minority class taken from the majority class, whereas the second strategy duplicates 
the minority class several times until the length of majority and minority classes will 

be equal. The drawback of a random undersampler is the loss of information. 
However, it is the only suitable undersampling strategy for a dataset that consists of 

categorical and continuous variables. Random oversampler leads to overfitting as it 
copies the minority class (Alencar, 2017). Therefore, another appropriate resampling 

method was selected. 
SMOTE (Synthetic Minority Oversampling Technique) is another popular 

oversampling method that draws new samples of minority classes using its existed 
data. It draws the lines between an example and the nearest 5 neighbors and creates 



7 
 

 

a new sample along that line. Graph 2 illustrates how new samples were created, 
thereby providing additional information to the machine learning model (Brownlee, 

2020). 
SMOTE cannot be applied to the above mentioned dataset as it does not 

handle categorical features. Therefore, Synthetic Minority Oversampling 
Technique-Nominal Continuous (SMOTE-NC) is selected as the oversampling 

method. It works as a SMOTE method for a continuous dataset, and the categorical 
variable of the new sample is the value of the majority of the k-nearest neighbors 

(Chawla, Bowyer, Hall and Kegelmeyer, 2002). 
Graph 2 

Oversampling minority classes using SMOTE 

 
Source:  Lemaitre, Nogueira, Oliveira and Aridas, n.d. 

 
Preprocessing 

 Preprocessing is important task to make the data readable. Six parameters of 
dataset are categorical data and it has to be converted to numerical using encoder. 
Scikit-learn library (Python) provides techniques that convert discrete features to 

one-hot numerical array. It also has models which split the data into training and 
testing dataset (du Boisberranger, n.d.).  

 The next important part of preprocessing is feature scaling of the dataset. 
Machine learning algorithms commonly use Euclidean distance measure; thus it is 

sensitive to magnitudes of parameters. For instance, the algorithms neglect other 
parameters in the dataset because of large values of credit amount. Therefore, feature 

scaling is required to normalize the dataset. It also decreases the cost: credit scoring 
techniques analyze the normalized dataset faster. Abovementioned python library 

provides standard feature scaling techniques that normalize the dataset through the 
formula: 

𝑧 =
𝑥−µ

𝜎
 (du Boisberranger et al., n.d.) 

whereas, µ is mean and ϭ is standard deviation of the data. 

 
Principal component analysis  

 Principal component analysis (PCA) is one of the well-known dimensionality 
reduction techniques. It helps to decrease the dataset dimension with minimal loss 
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of information (Mueller & Guido, 2017). Consequently, it will decrease the 
computation time of an algorithm.  

 The algorithm selects the right hyperplane and projects the data onto that 
hyperplane. After the projection, the variance of the data is computed based on each 

new axis called the principal component. The first component preserves maximum 
variance, while the last component - least variance. 

Graph 3 
Principal component analysis 

 
Source:  Geron, 2017 
 

 Principal component analysis performed on both balanced datasets. The result 
of the undersampled dataset indicates that the first 14 components (columns) are 

enough to capture the 95% of the total variance of the dataset and the other 19 
components can be erased. It is enough to use only 12 components of an 

oversampled dataset to capture 95% of the total variance. 
Graph 4 

Cumulative explained variance ratio of PCA 

 
Source:  compiled by the author 
 



9 
 

 

 In this research, two linear and six nonlinear machine learning methods were 
applied to the dataset. The main goal to find out which algorithm outperforms others. 

In addition, the research helps to compare and contrast linear and nonlinear 
algorithms.  

 The feasibility of handling a large dataset is the main criteria for algorithm 
selection. Therefore, well-known algorithms such as linear and kernel support vector 

classifier (SVC) were not considered in the research. Logistic regression, stochastic 
gradient descent (SGD) classifier, Naïve Bayes classifier, kth nearest neighbors 

(kNN), decision tree classifier, random forest classifier, multilayer perceptron 
(MLP) classifier (neural network classifier), and extreme gradient boosting (XGB) 

classifier were implemented, and the results were discussed. Several 
hyperparameters of nonlinear algorithms will be neglected due to the inability to 

handle large datasets. 
  

Logistic Regression  
 Despite its name, logistic regression is used for classification. The algorithm 
calculates the probability based on the training dataset according to the formula: 

𝑃(𝑦 = 1|𝑥) =  
1

1+𝑒−(𝑤0+𝑾𝑻𝑥)
 (Baesens et al., 2003) 

where x is input data, w0 is a scalar intercept and W is a parameter vector. If the 

probability is more than 50%, the input data is classified as positive.  
The important hyperparameter such as solver and regularization parameters 

were tuned to increase the accuracy. ‘Liblinear’ solver is generally used for a small 
dataset, whereas ‘sag’ and ‘saga’ are a better choice for larger data analysis as it 

takes less time for computation (du Boisberranger et al., n.d.).  
The penalty is a regularization hyperparameter used in penalization, and it has 

a close connection with the solver. ‘Newton-cg’, ‘sag’ and ‘lbfgs’ solvers support 
only ‘l2’ penalties, while only ‘saga’ solver supports ‘elasticnet’ penalty. ‘C’ is the 

inverse of regularization strength which must be positive. A smaller value for ‘C’ 
indicates stronger regularization (du Boisberranger et al., n.d.). 

Graph 5 
Linear classification models 

 
Source: compiled by the authors 
 

Stochastic Gradient Descent (SGD)  
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SGD classifier is one of the effective linear classification methods applied to 
large datasets. The algorithm uses a first-order SGD learning routine. The parameter 

of the method is updated iteratively over training examples according to the formula:  

𝜔 = 𝜔 − ŋ[𝛼
𝜕𝑅(𝜔)

𝜕𝜔
+

𝜕𝐿(𝜔𝑇𝑥𝑖+𝑏,𝑦𝑖 )

𝜕𝜔
] (du Boisberranger et al., n.d.) 

Where α is hyperparameter which controls regularization strength, R is 
regularization term that penalizes model complexity. L is loss function that measures 

model fit, ŋ is the learning rate and b is intercept which is updated similarly without 
regularization.  
 Gradient descent is one of the important algorithms used to minimize a cost 

function (Fuchs, 2019). In general, there are three popular types of gradient descent: 
1. Batch gradient descent; 

2. Stochastic gradient descent; 
3. Mini-batch gradient descent. 

Batch Gradient Descent computes the partial derivative of the cost function of 
an algorithm with regard to its parameters. In other words, the algorithm discovers 

how the different values of the model parameters impacts on cost function of the 
algorithm. The disadvantage is that it uses whole training data to compute it at every 

step. Therefore, the algorithm cannot handle large datasets (Geron, 2019).  
Stochastic gradient descent addresses this problem as it picks random 

instances of training data and computes gradient descent based on that single 
instance. On the other hand, batch gradient descent will decrease the cost function 

smoothly, while it bounces up and down until the algorithm stops. The algorithm 
will not compute optimal parameter values (Geron, 2019). 

Mini-batch gradient descent takes a small sample out of training data and 

computes batch gradient descent algorithm. Therefore, the cost function 
computation result is less erratic compared to stochastic gradient descent (Geron, 

2019).   
The method has many hyperparameters which makes it very complex. 

Important parameters such as loss function and regularization parameters such as 
penalty and alpha are considered in the tuning process of the model. The method 

with ‘Hinge’ loss function performs like linear SVM, while with ‘log’ function it 
gives logistic regression (du Boisberranger et al., n.d.).     

 The algorithm is very sensitive to feature scaling. But it is easy to implement 
and very efficient, especially for larger datasets (du Boisberranger et al., n.d.). Also, 

it continues to work without keeping the record in RAM (Fuchs, 2019). 
 

Naïve Bayes classifier 
 In general, Naïve Bayes (NB) classifier is based on Bayes theorem assuming 
the independence of every feature: 

𝑃(𝑦|𝑥1,… , 𝑥𝑛) =  
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑃(𝑥1,…,𝑥𝑛)
 (du Boisberranger et al., n.d.) 

There are several types of NB classifiers. In this research, Gaussian Naïve Bayes 

(GaussianNB) classifier is used for the estimation of the likelihood of the features 
based on the formula: 
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𝑃(𝑥𝑖|𝑦) =  
1

√2𝜋𝜎𝑦
2

𝑒
−

(𝑥𝑖−𝜇𝑦)2

2𝜎𝑦
2

(du Boisberranger et al., n.d.) 

where mean and standard deviation are estimated via maximum likelihood.  

 
kth Nearest Neighbors 

 kNN is one of the simplest algorithms of supervised machine learning. The 
number of nearest neighbors (k) is the main parameter in this algorithm. The result 
of the new data will be identified based on the majority of the result of the nearest 

neighbors. The large value of k will overwhelm the effects of noise, but it will have 
on the boundary of the classification (du Boisberranger et al., n.d.). The distance is 

measured according to the Euclidean Distance formula: 

𝑑(𝑥𝑖 ,𝑥𝑗) =  ‖𝑥𝑖 − 𝑥𝑗‖ =  [(𝑥𝑖 − 𝑥𝑗)
𝑇

(𝑥𝑖 − 𝑥𝑗)]
1/2

(Brown & Mues, 2012) 

Graph 6 

kth Nearest Neighbors classification model 

 
Source:  Mglearn library (Mueller & Guido, 2017) 

 
Decision Tree classifier 

 Decision Tree classifier simple algorithm that predicts target output via 
applying decision rules based on features data. The strength of the method is the 

ability to handle numerical, categorical features, and multi-output problems. The 
simplicity of the model is another advantage. But the model may create over-

complex trees which lead to overfitting of the model (du Boisberranger et al., n.d.).  
 Criterion and a maximum depth of the tree are considered in the tuning 
process of the model. The first parameter is the function that measures the quality of 

a split. ‘Gini’ (Gini impurity) and ‘entropy’ (information gain) are two choices for 
criteria function (du Boisberranger et al., n.d.). 

  
Random Forest Classifier 

Random Forest Classifier is an ensemble classification method that has all the 
hyperparameters of the Decision Tree classifier. The difference between the two 

models is that the former searches for the best feature among a subset of features, 
while the latter seeks for the best feature when splits a node. Thus, a random forest 

classifier results in a bigger tree (Geron, 2019). 
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Decision tree classifier 
Decision tree classification shows higher variance which leads to overfitting. 

Random forest classifier combines diverse trees, thereby achieves the reduction of 
the variance. Subsequently, it creates a better model than the decision tree classifier 

(du Boisberranger et al., n.d.). 
Graph 7 

Decision tree and random forest classifier on scikit-learn dataset 

 
Source: compiled by the authors 
 

Neural Network (Multilayer Perceptron) 
 A neural network is a model that was inspired by the human brain structure. 

The main structure of the algorithm consists of input, output and hidden layers. The 
size of hidden layers is an important hyperparameter of the algorithm. Each layer 

has nodes that hold a number, and each node receives a signal from each node from 
the previous layer and sends a signal to the nodes in the next layer. Each signal has 

weight and it goes along with a bias on which the input has no impact (Hansen, 
2019).  

Graph 8 
Neural network classifier 

 
Source: compiled by the authors 
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One important feature of the neural network is the gradient descent algorithm. 
It is used to minimize the deviation between the output and the calculated value of 

the output. The neural network uses backpropagation to calculate the gradients. 
Then, it updates all biases and adjusts weights of all nodes starting from the output 

(Hansen, 2019).  
 

XGBoost 
 Extreme gradient boosting (XGBoost) is one of the widely used algorithms. 

It is an implementation of gradient boosted decision trees. The execution speed and 
model performance are the advantages over other gradient boosting algorithms 

(Brownlee, 2016).  
 The advantage of the method is scalability. It uses a novel tree learning 

algorithm for handling sparse data and can handle missing values automatically. 
Parallel and distributed processing of the data makes it one the fastest algorithms. 

The algorithm uses out-of-core computation and processes millions of examples on 
a computer. Therefore, it is one of the best candidates to process large data. Another 
important feature of the method is called tree pruning. It results in deeper, but 

optimized trees (Chen & Guestrin, 2016). 
 

Cross-validation  
 Cross-validation is a statistical method used to measure the performance of 

the methods based on training and testing dataset. A commonly used version of 
cross-validation is k-fold cross-validation, where the number of folds is 5 or 10 

(Mueller & Guido, 2017). In the research, 5-fold cross-validation was used as it is 
shown in Graph 9. Consequently, the dataset is divided into five equal folds. If the 

first fold is used as a test set, the remaining folds as training set. To sum up, the goal 
is to compute the mean and standard deviation of the accuracies and analyze the 

impact of datasets on the model accuracy based on metrics. 
 Graph 9 

Five-fold cross-validation 

 
Source: Mglearn library (Mueller & Guido, 2017) 
 

Grid Search 
 Grid Search is the final step of the model construction. In this step, the selected 

machine learning model is tuned. The parameter grid is the first step of the tuning 
process where a set of all possible hyperparameters of the algorithms is listed. Then, 
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the model with a different set of hyperparameters is applied to the training and test 
data. This step helps to identify the set of parameters by which the model achieves 

the highest score. The model will be reconstructed with the set of best 
hyperparameters (Mueller & Guido, 2017). 

Graph 10 
Grid Search Overview 

 
Source: Mglearn library (Mueller & Guido, 2017) 

 
 The big question in this step was to choose the hyperparameters to tune the 

model. The several models have many hyperparameters and it takes too much time 
to tune the process. Thereby, the parameter grid was constructed based on the most 
important parameters. For instance, the only the number of nearest neighbors was 

the only parameter selected for tuning the kNN model. Kaggle, the website for data 
scientists, provides a grid search model for some models that were used in the 

research. 
 

Metrics 
 In machine learning, regression, clustering and classification algorithms use 

different performance metrics. Classification algorithms also have different metrics 
for binary and multiclass classification. There are 6 metrics used in this research: 

1. Accuracy score  
2. Precision score 

3. Recall score 
4. F1 score 
5. Jaccard score 

6. The area under the receiving operating characteristic (ROC) curve 
7. Type 2 error percentage 

 
Confusion matrix 

 The confusion matrix is a matrix table used to evaluate the performance of the 
classifier. It generally indicates the number of correct and incorrect results of a 

classification algorithm. It also gives information about the type 1 and type 2 errors 
which will be explained in this section. 
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Table 2 
Confusion matrix 

 Actual class (observation) 

Predicted class 
(expectation) 

TP (true positive) 

Correct result 

FP (false positive) 

Unexpected result 

FN (false negative) 

Missing result 

TN (true negative) 

Correct absence 
of result 

Source: Binary classification (du Boisberranger et al., n.d.) 

 
1. Accuracy score 

Accuracy is the most important metric in the research. It is also used as a 
scoring metric to tune the model in a grid search. The metric indicates the fraction 

of the correct results of the model: 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑)

=
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ 1(𝑖𝑓 𝑦𝑡𝑟𝑢𝑒 = 𝑦𝑝𝑟𝑒𝑑)(𝑑𝑢 𝐵𝑜𝑖𝑠𝑏𝑒𝑟𝑟𝑎𝑛𝑔𝑒𝑟 𝑒𝑡 𝑎𝑙. , 𝑛. 𝑑. )

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 −1

𝑖=0

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (𝐺𝑒𝑟𝑜𝑛,2019;  𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜,2017) 

 

2. Precision score 
The precision metric is the number of correct positive predictions divided by 

the number of total positive predictions.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (𝐺𝑒𝑟𝑜𝑛,2019; 𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜, 2017) 

 
3. Recall score 

Recall is the number of correct positive predictions divided by the number of 
actual positive outcomes. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (𝐺𝑒𝑟𝑜𝑛,2019; 𝑀𝑢𝑒𝑙𝑙𝑒𝑟 & 𝐺𝑢𝑖𝑑𝑜, 2017) 

 
4. F1 score 

Precision and recall are important metrics. However, none of them separately 
will not give full picture. F1 is another metric used for binary classification, and it 

is harmonic mean of precision and recall (Geron, 2019; Mueller & Guido; 2017). 
 

𝐹1 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

= 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
𝐹𝑁 + 𝐹𝑃

2

 (𝐺𝑒𝑟𝑜𝑛,2019) 

  
5. Jaccard similarity coefficient score 

Jaccard similarity score (JSC) is the intersection of actual and predicted output 
to their union.  
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𝐽𝑆𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=  

𝐹1

2 − 𝐹1

 (𝐿𝑎𝑏𝑎𝑡𝑢𝑡 & 𝐶ℎ𝑒𝑟𝑖𝑓𝑖, 2011) 

 

6. Area under ROC curve 
Receiving operating characteristic (ROC) curve is an important tool to analyze 

the performance of the binary classifiers. It is a line curve that plots the TP rate 

against the FP rate. The area under this curve is another way to compare the 
classifiers (Geron, 2019). 

The value of these metrics ranges between 0 and 1: the higher the value – the 
more suitable the model for consumer credit analysis. In addition, these metrics have 

a very close relationship. 
 

7. Type 2 percentage 
Machine learning classifiers as statistical models also have type 1 and type 2 

errors. Type 1 error is also known as false positive (FP) error (Schmarzo, 2018). For 
example, one of the second-tier commercial banks implements the models for credit 

scoring. The model rejects issuing a loan to a consumer as it declares that it will 
become a non-performing loan in the future. But, in reality, the consumer is capable 

of fully repaying loans. In this situation, banks reject to issue debt, but it will not 
have a significant impact on the liquidity and solvency of the bank.  

False-negative (FN) is another type of error which is also known as type 2 

error (Schmarzo, 2018). Suppose that the bank issues debt to the consumer based on 
the output of machine learning which claims that the consumer will not fail to repay 

it. In reality, the loan becomes non-performing and it has negative consequences to 
the liquidity of the bank. The higher percentage of type 2 error indicates how worse 

the model is. 
 

4. Discussion of the results 

As discussed before, the random undersampling and oversampling techniques 
are not the best resampling technics. The former leads to loss of information, while 

the latter leads to overfitting problems. In addition, random undersampling was the 
only adaptable option for regulatory data in this research. In this section, the result 

of all classifiers will be discussed based on the data on which they were applied. 

Undersampling data 

According to the outcomes of the exercises, linear classifiers and the Naïve 

Bayes classifier are not the best options for credit scoring. This shows that linear 
models and Naïve Bayes cannot be a solution for credit scoring problems. Table 3 

indicates that all classifiers had underfitting problems: the algorithms did not model 
training data well and performed inadequately on testing data.   

 

 



17 
 

 

Table 3 

Accuracy of classifiers applied to undersampled data  

  

Linear Models Non-Linear Models 

L
o
g
is

ti
c 

R
eg

re
ss

io
n

 

S
G

D
  

N
aï

v
e 

B
ay

es
 

k
N

N
  

D
ec

is
io

n
  

T
re

e 
 

R
an

d
o
m

 

F
o
re

st
  

N
eu

ra
l 

N
et

w
o
rk

s 

X
G

B
  

Training 58,6% 58,7% 59,0% 68,6% 68,3% 64,9% 70,8% 69,6% 

Testing 58,7% 58,9% 59,0% 67,1% 65,9% 64,6% 70,0% 67,2% 

Source: compiled by the authors  

 In spite of weak performance, the stochastic gradient descent (SGD) classifier 
gave one of the lowest percentages of type 2 error. Neural Networks classifier 

generated the best result among the models applied to undersampled data based on 
most of the metrics. But a high percentage of type 2 error does not make it a favorite. 

Also, the model takes comparatively more time for computation. Thereby, the 
extreme gradient boosting (XGB) classifier is the best option, because it is fast, 

accurate, precise, and also had the second highest accuracy score and second-lowest 
percentage of type 2 error.  

Table 4 
Models and performance results 

 

  

Metrics 

Accuracy Precision Recall F1 JSC AUC_ROC Type 2 error 

L
in

ea
r Logistic 

Regression 
58,7% 59,0% 58,5% 58,7% 41,6% 58,7% 20,8% 

SGD 58,9% 57,9% 66,5% 61,9% 44,8% 58,9% 16,8% 

N
o
n

-L
in

ea
r 

Naïve Bayes 59,0% 60,1% 54,3% 57,0% 39,9% 59,0% 23,0% 

kNN  67,1% 68,4% 64,0% 66,1% 49,4% 67,1% 18,6% 

Decision Tree  65,9% 66,9% 63,5% 65,2% 48,3% 65,9% 18,3% 

Random Forest  64,6% 63,5% 69,4% 66,3% 49,6% 64,6% 15,4% 

Neural 

Networks 
70,0% 72,8% 64,1% 68,2% 51,7% 70,0% 18,0% 

XGB  67,2% 67,4% 67,3% 67,4% 50,8% 67,2% 16,4% 

Source: compiled by the authors 

Oversampled data 

 The classifiers performed much better on oversampled data. One of the 

reasons for the success is the SMOTE resampling technique which brought 
additional information to the data. Linear classifiers and Naïve Bayes classifiers 
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showed the worst performance results. Other classifiers well-fitted training data and 
performed well on oversampled data. 

 Table 5 
Accuracy of classifiers applied to oversampled data 

  

Linear Models Non-Linear Models 
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Training 64,1% 64,1% 64,9% 99,9% 76,8% 99,6% 73,6% 74,6% 

Testing 64,1% 64,1% 64,9% 83,5% 75,3% 84,8% 73,6% 74,4% 

 Source: compiled by the author 

 Neural Networks was a promising model, but there is an insignificant 

difference between the model performance on undersampled and oversampled data.  
Despite of an increase in the accuracy on oversampled data in comparison with 

undersampled data, the Neural Networks could not outperform non-linear models.    
 According to Table 6, kNN and random forest classifiers outperformed other 

classifiers based on all indicators. In addition, both models demonstrated the lowest 
percentage of type 2 error. However, the random forest classifier outperformed the 

kNN classifier by all metrics except precision. 
Table 6 

Models and performance results 

  

Metrics 

Accuracy Precision Recall F1 JSC AUC_ROC Type 2 error 

L
in

ea
r Logistic 

Regression 
64,1% 63,9% 65,1% 64,5% 47,6% 64,1% 17,5% 

SGD 64,1% 63,9% 65,1% 64,5% 47,6% 64,1% 17,5% 

N
o
n

-L
in

ea
r 

Naïve Bayes 64,9% 62,6% 74,2% 67,9% 51,4% 64,9% 12,9% 

kNN 83,5% 85,2% 81,0% 83,0% 71,0% 83,5% 9,5% 

Decision Tree 75,3% 74,8% 76,2% 75,5% 60,7% 75,3% 11,9% 

Random Forest 84,8% 84,7% 85,0% 84,8% 73,6% 84,8% 7,5% 

Neural 

Networks 
73,6% 71,2% 79,1% 75,0% 60,0% 73,6% 10,5% 

XGB 74,4% 73,5% 76,2% 74,9% 59,8% 74,4% 11,9% 

Source: compiled by the authors 
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5. Conclusion  

The results of the study showed that the machine learning models work 
sufficiently well on the basis of regulatory data collected by the central bank. In 

addition, the analysis of consumer loans with machine learning algorithms 
demonstrated a unique insight regarding the features of (bad and good) consumer 

borrowers as well as provided information to check the accuracy of issued consumer 
loans by second-tired banks. 

In this research, we have presented that it is critical to perform data quality 
checks (during arrangement and cleaning procedures to eliminate unnecessary 

variables), and it is essential to deal with an imbalanced set of training data to avert 
bias in favor of most categories. 

In terms of forecasting accuracy of models, oversampled data adjusted by the 

SMOTE method showed more promising results in comparison with randomly 
undersampled data. In other words, the oversampled data adjusted by SMOTE 

helped to minimize the loss of information and increase the forecasting power. 
Models with well-fitted training data performed better on oversampled data 

compared with randomly undersampled data. 
 Furthermore, the non-linear models illustrated more accurate predictions 

compared with the linear models. Specifically, the non-linear models such as the 
random forest and kNN classifiers on oversampled data outperformed other 

classification models, on the other hand, the linear models such as logistic regression 
and SGD classifier showed the weakest results among compared eight models.  

 To sum up, the models based on regulatory data can be an adequate foundation 
for the evaluation of credit risk of issued consumer loans by second-tier banks, and 
also can help the central bank to predict potential systematic risks. So, according to 

outcomes of the study, an assessment of credit risk through machine learning can be 
a good supplement for regulation of the second-tier banks that issue consumer loans. 

In order to improve the quality of this research several steps should be done: 
          Additional data: According to Grier (2012), there are some additional data 

such as incomes, social status, experience, education, and the sector in which a 
borrower works, which might bring a positive impact on the performance of 

algorithms. 
In terms of models, there are some approaches that are able to improve their 

accuracy:  
a. Application of hybrid machine learning methods 

b. Building a Selective Combined Forecasting System 
c. Including additional parameters in grid search and over/undersampling   
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Appendix 

# Important libraries 
import numpy as np 

import pandas as pd 
import matplotlib.pyplot as plt 

import matplotlib 
import os 

path = ’E:\...’   #selecting path to document where the file is located 
os.chdir(path) 

df_ml = pd.read_csv(‘filename.csv’) 
X_df = df_ml.iloc[:,:-1].values 
y_df = df_ml.iloc[:,-1].values 

 
# Random Undersampling algorithm from imblearn library 

from imblearn.under_sampling import RandomUnderSampler as rus 
us = rus(random_state=42) 

X, y = us.fit_resample(X_df, y_df) 
 

# SMOTE-NC oversampling algorithm from imblearn library 
from imblearn.over_sampling import SMOTENC 

sm = SMOTENC(random_state=42, categorical_features=[0,1,2,3,4,5])  # there 
column of the data are categorical variables 

X, y = sm.fit(X_df, y_df) 
 
# Encoding categorical data 

from sklearn.compose import ColumnTransformer 
from sklearn.preprocessing import OneHotEncoder 

 
# the first column of categorical variables contained 18 different variables (three 

cities and regions (also former name for one region)), thus create 18 rows  
ct0 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[0])], 

remainder=’passthrough’) 
X=np.array(ct0.fit_transform(X)) 

 
# the second column of categorical variables contained 4 different variables (four 

type of currency, in which a loan was issued), thus create 4 rows  
ct1 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])], 

remainder=’passthrough’) 
X=np.array(ct1.fit_transform(X)) 
 

# the third column of categorical variables contained 2 different variables (credit 
card or cash), thus create 2 rows  

ct2 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])], 
remainder=’passthrough’) 
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X=np.array(ct2.fit_transform(X)) 
 

# the fourth column of categorical variables contained 2 different variables (for 
consumer use or autoloan), thus create 2 rows  

ct3 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])], 
remainder=’passthrough’) 

X=np.array(ct3.fit_transform(X)) 
 

# the fifth column of categorical variables contained 2 different variables (male or 
female), thus create 2 rows  

ct4 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])], 
remainder=’passthrough’) 

X=np.array(ct4.fit_transform(X)) 
 

# the sixth column of categorical variables contained 2 different variables (local or 
foreigner), thus create 2 rows  
ct5 = ColumnTransformer(transformers=[(‘encoder’, OneHotEncoder(),[18])], 

remainder=’passthrough’) 
X=np.array(ct5.fit_transform(X)) 

 
# Label Encoder of y variable 

from sklearn.preprocessing import LabelEncoder 
le = LabelEncoder() 

y = le.fit_transform(y) 
 

# splitting data into train and test dataset 
from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, 
random_state=1) 
 

# feature scaling 
from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 
X_train[:,-3:] = sc.fit_transform(X_train[:,-3:]) 

X_test[:,-3:] = sc.transform(X_test[:,-3:]) 
 

# Principal component analysis (PCA) 
from sklearn.decomposition import PCA 

pca = PCA(n_components=a)     # a is quantity where cumulative explained variance 
ratio > 95% 

X_train = pca.fit_transform(X_train) 
X_test = pca.transform(X_test) 

 
# Logistic Regression 
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from sklearn.linear_model import LogisticRegression 
log = LogisticRegression().fit(X_train,y_train) 

y_tr_log_pred = log.predict(X_train) 
y_ts_log_pred = log.predict(X_test) 

 
# Stochastic Gradient Descent Classifier 

from sklearn.linear_model import SGDClassifier 
sgd=SGDClassifier().fit(X_train,y_train) 

y_tr_sgd_pred = sgd.predict(X_train) 
y_ts_sgd_pred = sgd.predict(X_test) 

 
# Gaussian Naïve Bayes Classifier 

from sklearn.naive_bayes import GaussianNB 
nbc = GaussianNB().fit(X_train,y_train) 

y_tr_nb_pred = nbc.predict(X_train) 
y_ts_nb_pred = nbc.predict(X_test) 
 

# kth nearest neighbors (kNN) Classifier 
from sklearn.neighbors import KNeighborsClassifier 

knn=KNeighborsClassifier().fit(X_train,y_train) 
y_tr_knn_pred = knn.predict(X_train) 

y_ts_knn_pred = knn.predict(X_test) 
 

# Decision Tree Classifier 
from sklearn.tree import DecisionTreeClassifier 

dtc=DecisionTreeClassifier(max_depth=14, 
criterion='entropy').fit(X_train,y_train) 

y_tr_dt_pred = dtc.predict(X_train) 
y_ts_dt_pred = dtc.predict(X_test) 
 

# Random Forest Classifier 
from sklearn.ensemble import RandomForestClassifier 

rfc=RandomForestClassifier().fit(X_train,y_train) 
y_tr_rf_pred = rfc.predict(X_train) 

y_ts_rf_pred = rfc.predict(X_test) 
 

# Multi-layer perceptron Classifier (Neural network) 
from sklearn.neural_network import MLPClassifier 

nnc = MLPClassifier().fit(X_train,y_train)  
y_tr_nnc_pred = nnc.predict(X_train) 

y_ts_nnc_pred = nnc.predict(X_test) 
 

# Extreme gradient boosting (XGB) Classifier 
from xgboost import XGBClassifier 
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xgb = XGBClassifier().fit(X_train,y_train) 
y_tr_xgb_pred = xgb.predict(X_train) 

y_ts_xgb_pred = xgb.predict(X_test) 
 

# Cross-validation 
from sklearn.model_selection import cross_val_score 

accuracies = cross_val_score(estimator = xgb, X = X_train, y = y_train, cv = 5) 
print('Accuracy: {:.2f} %'.format(accuracies.mean()*100)) 

print('Standard deviation: {:.2f} %'.format(accuracies.std()*100)) 
 

### Note: we can put other models instead of XGB to analyze cross-validation result 
 

# Grid Search for Logistic Regression 
from sklearn.model_selection import GridSearchCV 

parameters = [{'penalty': ['none'], 'solver':['newton-cg', 'sag', 'saga', 'lbfgs']}, 
              {'penalty': ['elasticnet'], 'C': [0.01, 0.1, 0.25, 0.5, 0.75, 1, 5, 10], 
'solver':['saga']}, 

              {'penalty': ['l2'], 'C': [0.01, 0.1, 0.25, 0.5, 0.75, 1, 5, 10], 'solver':['newton-
cg', 'sag', 'saga', 'lbfgs']}] 

grid_search = GridSearchCV(estimator = log,  
                           param_grid = parameters, 

                           scoring = 'accuracy', 
                           cv = 5, 

                           n_jobs = -1) 
grid_search.fit(X_train, y_train) 

best_accuracy = grid_search.best_score_ 
best_parameters = grid_search.best_params_ 

print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 
print('Best parameters: ',best_parameters) 
 

# Grid Search for SGD Classifier 
from sklearn.model_selection import GridSearchCV 

parameters = [{"loss" : ["hinge", "log", "squared_hinge", "modified_huber"],  
               "alpha" : [0.0001, 0.001, 0.01, 0.1], "penalty" : ["l2", "l1", "none"]}] 

grid_search = GridSearchCV(estimator = sgd,  
                           param_grid = parameters, 

                           scoring = 'accuracy', 
                           cv = 5, 

                           n_jobs = -1) 
grid_search.fit(X_train, y_train) 

best_accuracy = grid_search.best_score_ 
best_parameters = grid_search.best_params_ 

print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 
print('Best parameters: ',best_parameters) 
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# Grid Search for Gaussian Naïve Bayes Classifier 

from sklearn.model_selection import GridSearchCV 
parameters = [{'var_smoothing': [1e-12,1e-10,1e-7,1e-4,1e-3,1e-2,1e-1,1,10]}] 

grid_search = GridSearchCV(estimator = nbc,  
                           param_grid = parameters, 

                           scoring = 'accuracy', 
                           cv = 5, 

                           n_jobs = -1) 
grid_search.fit(X_train, y_train) 

best_accuracy = grid_search.best_score_ 
best_parameters = grid_search.best_params_ 

print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 
print('Best parameters: ',best_parameters) 

 
# Grid Search for kNN Classifier 
from sklearn.model_selection import GridSearchCV 

parameters = [{'n_neighbors': list(range(1, 81))}] 
grid_search = GridSearchCV(estimator = knn,  

                           param_grid = parameters, 
                           scoring = 'accuracy', 

                           cv = 5, 
                           n_jobs = -1) 

grid_search.fit(X_train, y_train) 
best_accuracy = grid_search.best_score_ 

best_parameters = grid_search.best_params_ 
print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 

print('Best parameters: ',best_parameters) 
 
# Grid Search for Decision Tree Classifier 

from sklearn.model_selection import GridSearchCV 
parameters = [{'criterion':['gini', 'entropy'],'max_depth': list(range(1,21))}] 

grid_search = GridSearchCV(estimator = dtc,  
                           param_grid = parameters, 

                           scoring = 'accuracy', 
                           cv = 5, 

                           n_jobs = -1) 
grid_search.fit(X_train, y_train) 

best_accuracy = grid_search.best_score_ 
best_parameters = grid_search.best_params_ 

print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 
print('Best parameters: ',best_parameters) 

 
# Grid Search for Random Forest Classifier 
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from sklearn.model_selection import GridSearchCV 
parameters = [{'n_estimators': list(range(1,21)), 'max_features': ['auto', 'sqrt', 'log2'], 

               'max_depth' : ['None',8], 'criterion' :['gini', 'entropy']}] 
grid_search = GridSearchCV(estimator = rfc,  

                           param_grid = parameters, 
                           scoring = 'accuracy', 

                           cv = 5, 
                           n_jobs = -1) 

grid_search.fit(X_train, y_train) 
best_accuracy = grid_search.best_score_ 

best_parameters = grid_search.best_params_ 
print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 

print('Best parameters: ',best_parameters) 
 

# Grid Search for MLP Classifier 
from sklearn.model_selection import GridSearchCV 
parameters = [{'hidden_layer_sizes':[100,200,300,[200,50],[100,100],[200,100]], 

               'activation':['identity','logistic','tanh','relu'], 
               'solver': ['adam'],  

               'learning_rate':['constant','invscaling','adaptive'], 
               'max_iter': [1000,1500,2000 ]}] 

grid_search = GridSearchCV(estimator = nnc,  
                           param_grid = parameters, 

                           scoring = 'accuracy', 
                           cv = 5, 

                           n_jobs = -1) 
grid_search.fit(X_train, y_train) 

best_accuracy = grid_search.best_score_ 
best_parameters = grid_search.best_params_ 
print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 

print('Best parameters: ',best_parameters) 
 

# Grid Search for XGB Classifier 
from sklearn.model_selection import GridSearchCV 

parameters = [{'n_estimators': [1000], #number of trees, change it to 1000 for better 
results 

               'max_depth': [6,7,8], 
               'learning_rate': [0.05], #so called `eta` value 

               'objective':['binary:logistic'], 
               'tree_method':['exact'], 

               'min_child_weight': [11], 
               'subsample': [0.8], 

               'colsample_bytree': [0.7]}] 
grid_search = GridSearchCV(estimator = xgb,  
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                           param_grid = parameters, 
                           scoring = 'accuracy', 

                           cv = 5, 
                           n_jobs = -1) 

grid_search.fit(X_train, y_train) 
best_accuracy = grid_search.best_score_ 

best_parameters = grid_search.best_params_ 
print('Best accuracy: {:.2f} %'.format(best_accuracy*100)) 

print('Best parameters: ',best_parameters) 
 

### After grid search, all best parameters should be implemented to be sure that the 
model with the best accuracy give higher accuracy and after that other metrics should 

be analyzed 
 

# Example where all metrics that were used  
from sklearn.metrics import confusion_matrix, accuracy_score 
knn_cm_tr = confusion_matrix(y_train,y_tr_knn_pred) 

print(knn_cm_tr) 
accuracy_score(y_train, y_tr_knn_pred) 

 
knn_cm_ts = confusion_matrix(y_test,y_ts_knn_pred) 

print(knn_cm_ts) 
accuracy_score(y_test, y_ts_knn_pred) 

 
from sklearn.metrics import roc_auc_score, jaccard_score, f1_score, 

precision_score, recall_score 
print(roc_auc_score(y_test,y_ts_knn_pred)) 

print(jaccard_score(y_test,y_ts_knn_pred)) 
print(f1_score(y_test,y_ts_knn_pred)) 
print(precision_score(y_test,y_ts_knn_pred)) 

print(recall_score(y_test,y_ts_knn_pred)) 
 

### Here, the metrics were used to analyze the performance of kNN Classifier, the 
variables should be changed to achieve the result of the other models 
 

 


